Loading...

الباحثون

Al-Anbary, Areej Hameed
Al-Qaraawi, Salih

تفاصيل البحث

سنة النشر

2021


العنوان

Classification of EEG signals for facial expression and motor execution with deep learning


الخلاصة

Recently, algorithms of machine learning are widely used with the field of electroencephalography (EEG) brain-computer interfaces (BCI). The preprocessing stage for the EEG signals is performed by applying the principle component analysis (PCA) algorithm to extract the important features and reducing the data redundancy. A model for classifying EEG, time series, signals for facial expression and some motor execution processes had been designed. A neural network of three hidden layers with deep learning classifier had been used in this work. Data of four different subjects were collected by using a 14 channels Emotiv EPOC+ device. EEG dataset samples including ten action classes for the facial expression and some motor execution movements are recorded. A classification results with accuracy range (91.25-95.75%) for the collected samples were obtained with respect to: number of samples for each class, total number of EEG dataset samples and type of activation function within the hidden and the output layer neurons. A time series EEG signal was taken as signal values not as image or histogram, analysed and classified with deep learning to obtain the satisfied results of accuracy. © 2021. All Rights Reserved.

رابط البحث